# Online Appendix <br> Unequal trade, unequal gains: the heterogeneous impact of MERCOSUR 

Rodolfo G. Campos Jacopo Timini

Date of this version: February 17, 2022

## Contents

Appendices ..... 2
A Theoretical appendix ..... 2
A. 1 Structural gravity ..... 2
A. 2 Tradeoffs ..... 5
B Data appendix ..... 6
C Tables ..... 7
D Additional results ..... 11
D. 1 Homogeneous within-bloc trade cost reduction ..... 11
D. 2 Exclusion of data on Paraguay ..... 12

## Appendices

## A Theoretical appendix

## A. 1 Structural gravity

We interpret our results through the lens of a generic structural gravity model. Let $X_{i j} \geq 0$ denote trade flows from country $i$ (the exporter) to country $j$ (the importer). The case $i=j$ denotes intra-national (domestic) trade flows and $i \neq j$ denotes international trade flows. A standard definition of a structural gravity model of trade (e.g., Head and Mayer, 2014) is a model where bilateral trade flows satisfy the following multiplicative relationship

$$
\begin{equation*}
X_{i j}=\frac{Y_{i}}{\Omega_{i}} \frac{E_{j}}{\Pi_{j}} \theta_{i j} \tag{1}
\end{equation*}
$$

where production in country $i$ is $Y_{i} \stackrel{\text { def }}{=} \sum_{j} X_{i j}$ and expenditure in country $j$ is $E_{j} \stackrel{\text { def }}{=} \sum_{i} X_{i j}$. Structural gravity models also satisfy two additional conditions:

$$
\begin{equation*}
\Omega_{i}=\sum_{k} \frac{E_{k}}{\Pi_{k}} \theta_{i k} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Pi_{j}=\sum_{k} \frac{Y_{k}}{\Omega_{k}} \theta_{k j} \tag{3}
\end{equation*}
$$

The term $\Omega_{i}$ is an outward resistance term. It is specific to the exporting country $i$ and measures $i$ 's access to potential export markets. The term $\Pi_{j}$ is an inward resistance term; it measures how much competition trade flows from any origin face in destination country $j$. Higher values of any of these terms lead to lower bilateral trade flows, which is why they are called multilateral resistance terms. The remaining element in the equation is $\theta_{i j}$, which captures all bilateral details that affect trade flows from country $i$ to $j$, such as geographical or cultural distance between countries, tariffs, and other bilateral non-tariff hindrances to trade. Higher bilateral trading costs correspond to lower values of $\theta_{i j}$. Bilateral trade costs are fully described by the matrix $\theta \stackrel{\text { def }}{=}\left[\theta_{i, j}\right]_{N \times N}$, where $N$ is the number of countries in the world.
Trade shares are defined as the ratio of trade that flows from country $i$ to $j$ to expenditure in the importing country:

$$
\begin{equation*}
\lambda_{i j} \stackrel{\text { def }}{=} \frac{X_{i j}}{E_{j}} \tag{4}
\end{equation*}
$$

By definition, trade shares are non-negative and sum to 1 when summed over $i$. The trade share $\lambda_{i i}$ is the fraction of goods imported by country $i$ from itself. It is a measure of how closed to trade country $i$ is.
The signature of a new trade agreement affects tariffs between countries, and therefore modifies entries in the matrix $\theta$. This will affect trade flows and, in general, all the elements in the structural gravity relationship (1). With the usual hat-notation (for any variable $x$, we denote
the change in this variable by $\hat{x}=\frac{x^{\prime}}{x}$ ), the change in bilateral trade flows in response to the change $\hat{\theta}=\frac{\theta^{\prime}}{\theta}$ is given by Using hat-notation,

$$
\begin{equation*}
\hat{X}_{i j}=\frac{X_{i j}^{\prime}}{X_{i j}}=\frac{Y_{i}^{\prime}}{Y_{i}} \frac{\Omega_{i}}{\Omega_{i}^{\prime}} \frac{E_{j}^{\prime}}{E_{j}} \frac{\Pi_{j}}{\Pi_{j}^{\prime}} \frac{\theta_{i j}^{\prime}}{\theta_{i j}}=\frac{\hat{Y}_{i}}{\hat{\Omega}_{i}} \frac{\hat{E}_{j}}{\hat{\Pi}_{j}} \hat{\theta}_{i j}, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{i}^{\prime}=\sum_{k} \frac{E_{k}^{\prime}}{\Pi_{k}^{\prime}} \theta_{i k}^{\prime} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Pi_{j}^{\prime}=\sum_{k} \frac{Y_{k}^{\prime}}{\Omega_{k}^{\prime}} \theta_{k j}^{\prime} \tag{7}
\end{equation*}
$$

It is not evident from (5) how equilibrium trade flows can be solved for because the change $\hat{\theta}$ produces an endogenous response of $\hat{Y}_{i}$ and $\hat{\Omega}_{i}$ for all exporters and $\hat{E}_{j}$ and $\hat{\Pi}_{j}$ for all importers. However, a combination of adding-up identities coupled with common patterns across various structural models yield a greatly simplified problem. In particular, assuming that an inelastic supply of labor is the only factor of production, and denoting the wage level in country $i$ by $w_{i}$, the Armington, Eaton-Kortum, Melitz, etc, models all lead to the same recursive system of equations. ${ }^{1}$

From the definition of the trade share,

$$
\begin{equation*}
\hat{\lambda}_{i j}=\frac{\hat{Y}_{i}}{\hat{\Omega}_{i}} \frac{\hat{\theta}_{i j}}{\hat{\Pi}_{j}} \tag{8}
\end{equation*}
$$

A result that was first derived by Dekle et al. (2007) for the Eaton-Kortum model, but which holds more generally in structural gravity models, is that

$$
\begin{equation*}
\hat{\lambda}_{i j}=\frac{\frac{\hat{Y}_{i}}{\hat{\Omega}_{i}} \hat{\theta}_{i j}}{\sum_{k} \lambda_{k j} \frac{\hat{Y}_{k}}{\hat{\Omega}_{k}} \hat{\theta}_{k j}} \tag{9}
\end{equation*}
$$

Notice that this implies

$$
\begin{equation*}
\hat{\Pi}_{j}=\sum_{k} \lambda_{k j} \frac{\hat{Y}_{k}}{\hat{\Omega}_{k}} \hat{\theta}_{k j} . \tag{10}
\end{equation*}
$$

Structural models all have in common that $\frac{Y_{i}}{\Omega_{i}}=A_{i} w_{i}^{\varepsilon}$, where $A_{i}>0$ is a technological or population constant and $\epsilon<0$ is the trade elasticity (cf. Head and Mayer, table 3.1). Therefore, $\frac{\hat{Y}_{k}}{\hat{\Omega}_{k}}=\left(\hat{w}_{k}\right)^{\epsilon}$, and changes in shares depend exclusively on changes in wages and bilateral trade costs.

$$
\begin{equation*}
\hat{\lambda}_{i j}=\frac{\left(\hat{w}_{i}\right)^{\epsilon} \hat{\theta}_{i j}}{\sum_{k} \lambda_{k j}\left(\hat{w}_{k}\right)^{\epsilon} \hat{\theta}_{k j}} \tag{11}
\end{equation*}
$$

[^0]If labor is the only factor of production, so that $Y_{i}=w_{i} L_{i}$ and $L_{i}$ is held fixed, then $\hat{Y}_{i}=\hat{w}_{i}$, so that the change is GDP can be substituted into the above equation.

Market clearing implies

$$
\begin{align*}
\hat{w}_{i}=\hat{Y}_{i} & =\frac{1}{Y_{i}} \sum_{j} \lambda_{i j}^{\prime} E_{j}^{\prime}  \tag{12}\\
& =\frac{1}{Y_{i}} \sum_{j} \lambda_{i j} \hat{\lambda}_{i j} E_{j}^{\prime}  \tag{13}\\
& =\frac{1}{Y_{i}} \sum_{j} \frac{\lambda_{i j}\left(\hat{w}_{i}\right)^{\epsilon} \hat{\theta}_{i j}}{\sum_{k} \lambda_{k j}\left(\hat{w}_{k}\right)^{\epsilon} \hat{\theta}_{k j}} E_{j}^{\prime} \tag{14}
\end{align*}
$$

In general, expenditure does not equal production because there are trade deficits. A trade deficit is defined by $E_{j}=Y_{j}+D_{j}$ and $E_{j}^{\prime}=Y_{j} \hat{Y}_{j}+D_{j} \hat{D}_{j}$. There are two common assumptions that are commonly made to deal with the evolution of trade deficits. The most common assumption (multiplicative deficit) is that the deficit evolves in proportion to GDP, so that $\hat{D}_{j}=\hat{Y}_{j}$. An alternative assumption (additive deficit) is that the deficit remains constant and $\hat{D}_{j}=1$. In the first case, $E_{j}^{\prime}=E_{j} \hat{Y}_{j}=E_{j} \hat{w}_{j}$ and in the second case $E_{j}^{\prime}=Y_{j} \hat{Y}_{j}+D_{j}=Y_{j} \hat{w}_{j}+D_{j}$. We choose the multiplicative assumption and obtain

$$
\begin{equation*}
\hat{w}_{i}=\frac{1}{Y_{i}} \sum_{j} \frac{\lambda_{i j}\left(\hat{w}_{i}\right)^{\epsilon} \hat{\theta}_{i j}}{\sum_{k} \lambda_{k j}\left(\hat{w}_{k}\right)^{\epsilon} \hat{\theta}_{k j}} E_{j} \hat{w}_{j} . \tag{16}
\end{equation*}
$$

This equation can be solved for wages $\left\{\hat{w}_{i}\right\}$. Once obtained, the other variables follow from

$$
\begin{align*}
\hat{Y}_{i} & =\hat{w}_{i}  \tag{17}\\
\hat{E}_{i} & =\hat{w}_{i}  \tag{18}\\
\hat{\Omega}_{i} & =\left(\hat{w}_{i}\right)^{1-\epsilon}  \tag{19}\\
\hat{\Pi}_{j} & =\sum_{k} \lambda_{k j}\left(\hat{w}_{k}\right)^{\epsilon} \hat{\theta}_{k j}  \tag{20}\\
\hat{\lambda}_{i j} & =\frac{\left(\hat{w}_{i}\right)^{\epsilon}}{\hat{\Pi}_{j}} \hat{\theta}_{i j}  \tag{21}\\
\hat{X}_{i j} & =\frac{\hat{Y}_{i}}{\hat{\Omega}_{i}} \hat{E}_{j}  \tag{22}\\
\hat{\Pi}_{j} & \hat{\theta}_{i j}=\hat{\lambda}_{i j} \hat{E}_{j}=\frac{\left(\hat{w}_{i}\right)^{\epsilon} \hat{w}_{j}}{\hat{\Pi}_{j}} \hat{t}_{i j}
\end{align*}
$$

See Baier et al. (2019) for the solution when the additive assumption is made.
Because of Walras Law, the fixed-point problem in (16) is homogeneous of degree zero in wages, and the solution requires a normalization to pin down the change in nominal wages between scenarios. We use the same normalization as Baier et al. (2019) and set the level of nominal wages so that that nominal world output stays constant between scenarios. ${ }^{2}$ This assumption

[^1]is particularly appealing in our case because we consider changes in trade policy involving MERCOSUR countries, who represent a small fraction of world trade and world GDP.

Structural gravity models usually assume utility functions that imply that the change in welfare, or gains from trade, equals the change in expenditure relative to the change in a price index $P_{i}$, with $\hat{P}_{i}=\hat{\Pi}_{i}^{1 / \epsilon}$. In this case, the formula by Arkolakis et al. (2012) is obtained:

$$
\begin{equation*}
\hat{G}_{i}=\frac{\hat{E}_{i}}{\hat{\Pi}_{i}^{1 / \epsilon}}=\frac{\hat{w}_{i}}{\hat{\Pi}_{i}^{1 / \epsilon}}=\left(\frac{\left(\hat{w}_{i}\right)^{\epsilon}}{\hat{\Pi}_{i}}\right)^{1 / \epsilon}=\hat{\lambda}_{i i}^{1 / \epsilon} . \tag{23}
\end{equation*}
$$

The second equality requires the multiplicative assumption and the last equality follows because $\hat{\theta}_{i i}=1$.

## A. 2 Tradeoffs

Agreements among countries imply different values of $\theta$. We denote the set of all possible configurations of trade costs by $\Theta$. This set includes at least two configurations of trade costs to make the problem non-trivial.

Let the real-valued function $r_{i}(c(\theta), \theta)$ capture the tradeoffs produced by moving to different trade agreements. These tradeoffs include all additional issues which the decision-maker cares about. Examples include the motivations discussed in the main text. We assume that the decision-maker can control the continuous function $r_{i}(c(\theta), \theta)$ through an arbitrary vector of choice variables $c$ chosen from a compact set $C(\theta)$, which may also depend on $\theta$.

The decision-maker of country $i$ therefore chooses $\theta \in \Theta$ and a vector of choices $c(\theta) \in C(\theta)$ to maximize the value

$$
\begin{equation*}
v_{i}(\theta)=r_{i}(c(\theta), \theta) G_{i}(\theta) \tag{24}
\end{equation*}
$$

where we assume both terms to be positive. Given the structure of the payoff function, the problem faced by the decision-maker can be decomposed into two steps: a step in which $c(\theta)$ is optimally chosen for any value of $\theta$ to maximize $r_{i}(c(\theta), \theta)$, and a second step that optimizes over values of $\theta$. Formally, for any given $\theta$, we denote the solution to the first problem as

$$
\begin{equation*}
R_{i}(\theta)=\max _{c \in C(\theta)} r_{i}(c, \theta) \tag{25}
\end{equation*}
$$

The maximized function $R_{i}(\theta)=r_{i}\left(c^{*}(\theta)\right)$ incorporates the optimal adjustments made by the decision-maker for any possible value of $\theta$. This solution is guaranteed to exist if $r(\cdot)$ is continuous (because $C(\theta)$ is assumed to be a compact set for all $\theta$ ). The optimum $c^{*}(\theta)$ does not need to be unique but the value of $R_{i}(\theta)$ is guaranteed to exist and to be unique.

The second optimization step of the decision-maker can then be expressed as the maximization of

$$
\begin{equation*}
V_{i}(\theta)=R_{i}(\theta) G_{i}(\theta) \tag{26}
\end{equation*}
$$

over different choices of $\theta \in \Theta$.

This implies, after taking the logarithm and differentiating,

$$
\begin{equation*}
\frac{d V_{i}}{V_{i}}=\frac{d R_{i}}{R_{i}}+\frac{d G_{i}}{G_{i}} . \tag{27}
\end{equation*}
$$

For discrete changes, the following approximation holds:

$$
\begin{equation*}
\frac{\Delta V_{i}}{V_{i}} \approx \frac{\Delta R_{i}}{R_{i}}+\frac{\Delta G_{i}}{G_{i}} . \tag{28}
\end{equation*}
$$

## B Data appendix

We use the unctad/wto database (Yotov et al., 2016) which includes both international and intra-national manufacturing trade flows (bilateral exports and imports) for 69 countries over the 21 -year period spanning from 1986-2006. In this database, the primary source for international (bilateral) trade flows is UN COMTRADE and the primary source for intra-national data is the cepir TradeProd dataset.

Paraguay is not included in the unctad/wto database. Unfortunately, data on gross manufacturing for Paraguay are spotty in Cepir TradeProd. Therefore, we infer manufacturing gross output for Paraguay from data on value added. We compute the ratio of gross manufacturing output to value added in manufacturing for those years in which data on gross output are available from cepir TradeProd and then construct gross output as the value added times the average of this ratio.
We obtain the international trade flows of Paraguay from the Observatory for Economic Complexity (OEC), who in turn source the data from UN COMTRADE and adjust it with mirroring techniques. When we detected trade flows not classified in any SITC category (labeled "ZZ" in the OEC database), we used wits data on bilateral manufacturing trade flows (classified following the same SITC classification used for the OEC database) instead, as long as wits data was available for all years. We changed both directional flows in this case, for consistency. If wits data was not available, then we used OEC data (without the "ZZ" category). We compute intra-national trade flows as the difference between our computed series for gross production and total manufacturing exports.

## C Tables

Table 1: Time-varying impact of MERCOSUR

|  | (1) | (2) | (3) | (4) | (5) | (6) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M $\times 1987$ | $\begin{aligned} & -0.082 \\ & (0.079) \end{aligned}$ | $\begin{gathered} -0.028 \\ (0.117) \end{gathered}$ | $\begin{aligned} & -0.055 \\ & (0.085) \end{aligned}$ |  |  | $\begin{aligned} & -0.054 \\ & (0.087) \end{aligned}$ |
| $\mathrm{M} \times 1988$ | $\begin{gathered} 0.034 \\ (0.054) \end{gathered}$ | $\begin{gathered} 0.124 \\ (0.123) \end{gathered}$ | $\begin{gathered} 0.029 \\ (0.095) \end{gathered}$ | $\begin{gathered} 0.030 \\ (0.092) \end{gathered}$ |  | $\begin{gathered} 0.035 \\ (0.103) \end{gathered}$ |
| $\mathrm{M} \times 1989$ | $\begin{gathered} 0.195 \\ (0.135) \end{gathered}$ | $\begin{gathered} 0.613^{* * *} \\ (0.111) \end{gathered}$ | $\begin{aligned} & 0.489 * * * \\ & (0.099) \end{aligned}$ |  |  | $\underset{(0.105)}{0.513^{* * *}}$ |
| $\mathrm{M} \times 1990$ | $\begin{aligned} & 0.259^{* *} \\ & (0.121) \end{aligned}$ | $\begin{aligned} & 0.385^{* *} \\ & (0.156) \end{aligned}$ | $\begin{gathered} 0.194 \\ (0.143) \end{gathered}$ | $\begin{gathered} 0.194 \\ (0.133) \end{gathered}$ | $\begin{gathered} 0.193^{*} \\ (0.104) \end{gathered}$ | $\begin{gathered} 0.201 \\ (0.145) \end{gathered}$ |
| M $\times 1991$ | $\begin{gathered} 0.290^{* * *} \\ (0.046) \end{gathered}$ | $\begin{gathered} 0.599^{* * *} \\ (0.041) \end{gathered}$ | $\begin{gathered} 0.394 * * * \\ (0.044) \end{gathered}$ |  |  | $\begin{gathered} 0.402^{* * *} \\ (0.052) \end{gathered}$ |
| M $\times 1992$ | $\begin{gathered} 0.433^{* * *} \\ (0.097) \end{gathered}$ | $\begin{gathered} 0.979^{* * *} \\ (0.140) \end{gathered}$ | $\begin{gathered} 0.734^{* * *} \\ (0.104) \end{gathered}$ | $\begin{gathered} 0.734^{* * *} \\ (0.107) \end{gathered}$ |  | $\begin{gathered} 0.738^{* * *} \\ (0.110) \end{gathered}$ |
| M $\times 1993$ | $\begin{gathered} 0.552^{* * *} \\ (0.065) \end{gathered}$ | $\begin{gathered} 1.195^{* * *} \\ (0.062) \end{gathered}$ | $\begin{gathered} 0.923^{* * *} \\ (0.060) \end{gathered}$ |  |  | $\begin{gathered} 0.917^{* * *} \\ (0.066) \end{gathered}$ |
| M $\times 1994$ | $\begin{gathered} 0.506^{* * *} \\ (0.091) \end{gathered}$ | $\begin{gathered} 1.319^{* * *} \\ (0.067) \end{gathered}$ | $\begin{gathered} 0.995^{* * *} \\ (0.071) \end{gathered}$ | $\underset{(0.061)}{0.997^{* * *}}$ | $\begin{gathered} 0.994^{* * *} \\ (0.055) \end{gathered}$ | $\begin{gathered} 0.987^{* * *} \\ (0.070) \end{gathered}$ |
| M $\times 1995$ | $\begin{gathered} 0.566 * * * \\ (0.083) \end{gathered}$ | $\begin{gathered} 1.498^{* * *} \\ (0.078) \end{gathered}$ | $\begin{gathered} 1.112^{* * *} \\ (0.070) \end{gathered}$ |  |  | $\begin{gathered} 1.072^{* * *} \\ (0.062) \end{gathered}$ |
| M $\times 1996$ | $\begin{gathered} 0.685^{* * *} \\ (0.078) \end{gathered}$ | $\begin{gathered} 1.650^{* * *} \\ (0.065) \end{gathered}$ | $\begin{gathered} 1.253^{* * *} \\ (0.062) \end{gathered}$ | $\begin{gathered} 1.255^{* * *} \\ (0.056) \end{gathered}$ |  | $\begin{gathered} 1.223^{* * *} \\ (0.058) \end{gathered}$ |
| M $\times 1997$ | $\begin{gathered} 0.793^{* * *} \\ (0.087) \end{gathered}$ | $\begin{gathered} 1.892^{* * *} \\ (0.082) \end{gathered}$ | $\begin{gathered} 1.419^{* * *} \\ (0.066) \end{gathered}$ |  |  | $\begin{gathered} 1.384^{* * *} \\ (0.065) \end{gathered}$ |
| M $\times 1998$ | $\begin{gathered} 0.845^{* * *} \\ (0.078) \end{gathered}$ | $\begin{gathered} 1.937^{* * *} \\ (0.103) \end{gathered}$ | $\begin{gathered} 1.419^{* * *} \\ (0.077) \end{gathered}$ | $\begin{gathered} 1.421 * * * \\ (0.073) \end{gathered}$ | $\underset{(0.063)}{1.418^{* * *}}$ | $\begin{gathered} 1.362^{* * *} \\ (0.076) \end{gathered}$ |
| M $\times 1999$ | $\begin{gathered} 0.783^{* * *} \\ (0.080) \end{gathered}$ | $\begin{gathered} 1.866^{* * *} \\ (0.063) \end{gathered}$ | $\begin{gathered} 1.356^{* * *} \\ (0.063) \end{gathered}$ |  |  | $\begin{gathered} 1.274^{* * *} \\ (0.069) \end{gathered}$ |
| $\mathrm{M} \times 2000$ | $\begin{gathered} 0.860^{* * *} \\ (0.123) \end{gathered}$ | $\begin{gathered} 1.888^{* * *} \\ (0.055) \end{gathered}$ | $\begin{gathered} 1.328^{* * *} \\ (0.085) \end{gathered}$ | $\begin{gathered} 1.329^{* * *} \\ (0.085) \end{gathered}$ |  | $\begin{gathered} 1.232^{* * *} \\ (0.091) \end{gathered}$ |
| M $\times 2001$ | $\begin{gathered} 0.778^{* * *} \\ (0.131) \end{gathered}$ | $\begin{gathered} 1.861^{* * *} \\ (0.057) \end{gathered}$ | $\begin{gathered} 1.290 * * * \\ (0.091) \end{gathered}$ |  |  | $\begin{gathered} 1.194^{* * *} \\ (0.102) \end{gathered}$ |
| M $\times 2002$ | $\begin{gathered} 0.677^{* * *} \\ (0.170) \end{gathered}$ | $\begin{gathered} 1.762^{* * *} \\ (0.100) \end{gathered}$ | $\begin{gathered} 1.230^{* * *} \\ (0.111) \end{gathered}$ | $\underset{(0.117)}{1.233^{* * *}}$ | $\begin{gathered} 1.233^{* * *} \\ (0.130) \end{gathered}$ | $\begin{gathered} 1.123^{* * *} \\ (0.124) \end{gathered}$ |
| M $\times 2003$ | $\begin{gathered} 0.772^{* * *} \\ (0.253) \end{gathered}$ | $\begin{gathered} 1.986^{* * *} \\ (0.161) \end{gathered}$ | $\begin{gathered} 1.412^{* * *} \\ (0.189) \end{gathered}$ |  |  | $\begin{gathered} 1.315^{* * *} \\ (0.202) \end{gathered}$ |
| $\mathrm{M} \times 2004$ | $\begin{gathered} 0.783^{* * *} \\ (0.253) \end{gathered}$ | $\begin{gathered} 2.205^{* * *} \\ (0.176) \end{gathered}$ | $\begin{gathered} 1.598^{* * *} \\ (0.212) \end{gathered}$ | $\begin{gathered} 1.602^{* * *} \\ (0.213) \end{gathered}$ |  | $\begin{gathered} 1.495^{* * *} \\ (0.226) \end{gathered}$ |
| $\mathrm{M} \times 2005$ | $\begin{gathered} 0.818^{* * *} \\ (0.267) \end{gathered}$ | $\begin{gathered} 2.310^{* * *} \\ (0.207) \end{gathered}$ | $\begin{gathered} 1.687^{* * *} \\ (0.236) \end{gathered}$ |  |  | $\begin{gathered} 1.583^{* * *} \\ (0.249) \end{gathered}$ |
| M $\times 2006$ | $\begin{gathered} 0.836^{* * *} \\ (0.249) \end{gathered}$ | $\begin{gathered} 2.328^{* * *} \\ (0.188) \end{gathered}$ | $\begin{gathered} 1.680 * * * \\ (0.210) \end{gathered}$ | $\begin{gathered} 1.684^{* * *} \\ (0.212) \end{gathered}$ | $\begin{gathered} 1.688^{* * *} \\ (0.213) \end{gathered}$ | $\begin{gathered} 1.560^{* * *} \\ (0.224) \end{gathered}$ |
| GSP | $\begin{gathered} -0.224^{* * *} \\ (0.056) \end{gathered}$ | $\begin{gathered} -0.265^{* * *} \\ (0.063) \end{gathered}$ | $\begin{gathered} -0.188^{* * *} \\ (0.055) \end{gathered}$ | $\begin{gathered} -0.184^{* * *} \\ (0.056) \end{gathered}$ | $\begin{gathered} -0.141^{* * *} \\ (0.054) \end{gathered}$ | $\begin{gathered} -0.216^{* * *} \\ (0.063) \end{gathered}$ |
| PTA | $\begin{gathered} 0.002 \\ (0.061) \end{gathered}$ | $\begin{gathered} 0.391^{* * *} \\ (0.123) \end{gathered}$ | $\begin{gathered} 0.258^{* * *} \\ (0.089) \end{gathered}$ | $\begin{gathered} 0.260^{* * *} \\ (0.078) \end{gathered}$ | $\begin{gathered} 0.283^{* * *} \\ (0.098) \end{gathered}$ | $\begin{gathered} 0.255 * * * \\ (0.095) \end{gathered}$ |
| FTA | $\begin{aligned} & 0.061^{*} \\ & (0.032) \end{aligned}$ | $\begin{gathered} 0.578^{* * *} \\ (0.108) \end{gathered}$ | $\begin{gathered} 0.255^{* * *} \\ (0.084) \end{gathered}$ | $\begin{gathered} 0.252^{* * *} \\ (0.085) \end{gathered}$ | $\begin{gathered} 0.273^{* * *} \\ (0.105) \end{gathered}$ | $\begin{gathered} 0.218^{* *} \\ (0.097) \end{gathered}$ |
| CU | $\begin{gathered} 0.213^{* * *} \\ (0.060) \end{gathered}$ | $\begin{gathered} 0.752^{* * *} \\ (0.127) \end{gathered}$ | $\begin{gathered} 0.430^{* * *} \\ (0.117) \end{gathered}$ | $\begin{gathered} 0.454^{* * *} \\ (0.112) \end{gathered}$ | $\begin{gathered} 0.503^{* * *} \\ (0.112) \end{gathered}$ | $\begin{gathered} 0.407 * * * \\ (0.122) \end{gathered}$ |
| CM | $\begin{aligned} & 0.129^{*} \\ & (0.076) \end{aligned}$ | $\begin{gathered} 0.962^{* * *} \\ (0.130) \end{gathered}$ | $\begin{gathered} 0.324^{* * *} \\ (0.117) \end{gathered}$ | $\begin{gathered} 0.349^{* * *} \\ (0.114) \end{gathered}$ | $\begin{gathered} 0.380^{* * *} \\ (0.111) \end{gathered}$ | $\begin{aligned} & 0.248^{*} \\ & (0.141) \end{aligned}$ |
| ECU | $\begin{gathered} 0.073 \\ (0.091) \end{gathered}$ | $\begin{gathered} 1.066^{* * *} \\ (0.137) \end{gathered}$ | $\begin{aligned} & 0.255^{* *} \\ & (0.122) \end{aligned}$ | $\begin{aligned} & 0.280^{* *} \\ & (0.119) \end{aligned}$ | $\begin{gathered} 0.324^{* * *} \\ (0.114) \end{gathered}$ | $\begin{gathered} 0.125 \\ (0.155) \end{gathered}$ |
| Observations | 101,430 | 102,900 | 102,900 | 53,812 | 29,280 | 102,900 |
| Intranational trade | no | yes | yes | yes | yes | yes |
| Border $\times$ year | no | no | yes | yes | yes | yes |
| log distance $\times$ year | no | no | no | no | no | yes |
| $\mathrm{p} \operatorname{avg}(1986-1990)=\operatorname{avg}(1991-1994)$ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| $\mathrm{p} \operatorname{avg}(1991-1994)=\operatorname{avg}(1995-2006)$ | 0.0055 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

Notes: The dependent variable are nominal bilateral trade flows. All specifications include exporter-time, importertime and country pair fixed effects. Standard errors are clustered by exporter, importer and year. The baseline specfication described in the text is shown as specification (3). With respect to the baseline, specifications (1) specfication described in the text is shown as specification (3). With respect to the baseline, specifications (1)
omits intra-national trade and specification (2) omits border-year interactions. Specifications (4) and (5) use data omits intra-national trade and specification (2) omits border-year interactions. Specifications (4) and (5) use data
only every two or four years, as in the study by Cheng and Wall (2005). Specifications (6) adds log distanceyear dummies as a control. The last two rows use a chi-squared test with the null hypothesis that the average of coefficients of $\mu_{t}$ over different periods are equal to each other.

Table 2: Heterogeneous impact of MERCOSUR

| VARIABLES | (1) | (2) | (3) |
| :---: | :---: | :---: | :---: |
| ARG $\leftrightarrow$ BRA $\times 1991-1994$ | $\begin{gathered} 0.938^{* * *} \\ (0.138) \end{gathered}$ |  |  |
| ARG $\leftrightarrow$ PRY $\times 1991-1994$ | $\begin{gathered} 0.828^{* * *} \\ (0.236) \end{gathered}$ |  |  |
| ARG $\leftrightarrow$ URY $\times 1991-1994$ | $\begin{gathered} 0.613^{* *} \\ (0.253) \end{gathered}$ |  |  |
| BRA $\leftrightarrow$ PRY $\times 1991-1994$ | $\begin{gathered} 0.103 \\ (0.127) \end{gathered}$ |  |  |
| BRA $\leftrightarrow$ URY $\times 1991-1994$ | $\begin{gathered} -0.012 \\ (0.138) \end{gathered}$ |  |  |
| PRY $\leftrightarrow$ URY $\times 1991-1994$ | $\begin{gathered} 0.399^{* * *} \\ (0.120) \end{gathered}$ |  |  |
| ARG $\leftrightarrow$ BRA $\times 1995-2006$ | $\begin{gathered} 1.707^{* * *} \\ (0.177) \end{gathered}$ |  |  |
| ARG $\leftrightarrow$ PRY $\times 1995-2006$ | $\begin{gathered} 1.056^{* * *} \\ (0.295) \end{gathered}$ |  |  |
| ARG $\leftrightarrow$ URY $\times 1995-2006$ | $\begin{gathered} 0.738^{* * *} \\ (0.107) \end{gathered}$ |  |  |
| BRA $\leftrightarrow$ PRY $\times 1995-2006$ | $\begin{gathered} 0.470^{* *} \\ (0.197) \end{gathered}$ |  |  |
| BRA $\leftrightarrow$ URY $\times 1995-2006$ | $\begin{gathered} 0.006 \\ (0.119) \end{gathered}$ |  |  |
| PRY $\leftrightarrow$ URY $\times 1995-2006$ | $\begin{gathered} 1.191^{* * *} \\ (0.171) \end{gathered}$ |  |  |
| ARG $\rightarrow$ BRA $\times 1991-1994$ |  | $\begin{gathered} 1.045^{* * *} \\ (0.163) \end{gathered}$ | $\begin{gathered} 0.803^{* * *} \\ (0.227) \end{gathered}$ |
| ARG $\rightarrow$ PRY $\times 1991$-1994 |  | $\begin{gathered} 0.702^{* * *} \\ (0.181) \end{gathered}$ | $\begin{gathered} 0.749^{* * *} \\ (0.219) \end{gathered}$ |
| ARG $\rightarrow$ URY $\times 1991-1994$ |  | $\begin{gathered} 0.765^{* * *} \\ (0.296) \end{gathered}$ | $\begin{gathered} 0.264 \\ (0.177) \end{gathered}$ |
| $\mathrm{BRA} \rightarrow \mathrm{ARG} \times 1991-1994$ |  | $\begin{gathered} 0.874^{* * *} \\ (0.267) \end{gathered}$ | $\begin{gathered} 1.104^{* * *} \\ (0.183) \end{gathered}$ |
| BRA $\rightarrow$ PRY $\times$ 1991-1994 |  | $\begin{aligned} & -0.055 \\ & (0.209) \end{aligned}$ | $\begin{gathered} 0.127 \\ (0.139) \end{gathered}$ |
| BRA $\rightarrow$ URY $\times 1991-1994$ |  | $\begin{aligned} & -0.114 \\ & (0.154) \end{aligned}$ | $\begin{aligned} & -0.165 \\ & (0.117) \end{aligned}$ |
| PRY $\rightarrow$ ARG $\times 1991-1994$ |  | $\begin{gathered} 1.671^{* * *} \\ (0.347) \end{gathered}$ | $\begin{gathered} 1.442^{* * *} \\ (0.269) \end{gathered}$ |
| PRY $\rightarrow$ BRA $\times 1991-1994$ |  | $\begin{gathered} 1.474^{* * *} \\ (0.305) \end{gathered}$ | $\begin{gathered} 0.126 \\ (0.217) \end{gathered}$ |
| PRY $\rightarrow$ URY $\times 1991-1994$ |  | $\begin{gathered} 1.505^{* * *} \\ (0.380) \end{gathered}$ | $\begin{gathered} 0.072 \\ (0.335) \end{gathered}$ |
| $\mathrm{URY} \rightarrow \mathrm{ARG} \times 1991$-1994 |  | $\begin{gathered} 0.464 \\ (0.360) \end{gathered}$ | $\begin{gathered} 1.033^{* * *} \\ (0.229) \end{gathered}$ |
| $\mathrm{URY} \rightarrow \mathrm{BRA} \times 1991-1994$ |  | $\begin{gathered} 0.152 \\ (0.167) \end{gathered}$ | $\begin{gathered} 0.201 \\ (0.149) \end{gathered}$ |
| URY $\rightarrow$ PRY $\times 1991-1994$ |  | $\begin{gathered} 0.230 \\ (0.250) \end{gathered}$ | $\begin{gathered} 0.479^{* * *} \\ (0.156) \end{gathered}$ |
| ARG $\rightarrow$ BRA $\times$ 1995-2006 |  | $\begin{gathered} 1.622^{* * *} \\ (0.220) \end{gathered}$ | $\begin{gathered} 1.389^{* * *} \\ (0.314) \end{gathered}$ |
| ARG $\rightarrow$ PRY $\times 1995-2006$ |  | $\begin{gathered} 0.902^{* * *} \\ (0.250) \end{gathered}$ | $\begin{gathered} 0.955 * * * \\ (0.281) \end{gathered}$ |
| ARG $\rightarrow$ URY $\times 1995-2006$ |  | $\begin{gathered} 1.030^{* * *} \\ (0.337) \end{gathered}$ | $\begin{aligned} & 0.535^{*} \\ & (0.287) \end{aligned}$ |
| $\mathrm{BRA} \rightarrow \mathrm{ARG} \times 1995-2006$ |  | $\begin{gathered} 1.778^{* * *} \\ (0.108) \end{gathered}$ | $\begin{gathered} 1.991^{* * *} \\ (0.335) \end{gathered}$ |
| BRA $\rightarrow$ PRY $\times$ 1995-2006 |  | $\begin{gathered} 0.438^{* *} \\ (0.188) \end{gathered}$ | $\begin{gathered} 0.613^{* * *} \\ (0.214) \end{gathered}$ |
| BRA $\rightarrow$ URY $\times$ 1995-2006 |  | $\begin{gathered} -0.012 \\ (0.090) \end{gathered}$ | $\begin{gathered} -0.069 \\ (0.245) \end{gathered}$ |
| PRY $\rightarrow$ ARG $\times 1995-2006$ |  | $\begin{gathered} 1.979 * * * \\ (0.209) \end{gathered}$ | $\begin{gathered} 1.736^{* * *} \\ (0.327) \end{gathered}$ |
| PRY $\rightarrow$ BRA $\times$ 1995-2006 |  | $\begin{gathered} 0.555 * * * \\ (0.203) \end{gathered}$ | $\begin{gathered} -0.795^{* * *} \\ (0.258) \end{gathered}$ |
| PRY $\rightarrow$ URY $\times$ 1995-2006 |  | $\begin{gathered} 2.783^{* * *} \\ (0.258) \end{gathered}$ | $\begin{gathered} 1.348^{* * *} \\ (0.288) \end{gathered}$ |
| $\mathrm{URY} \rightarrow \mathrm{ARG} \times 1995-2006$ |  | $\begin{gathered} 0.289 \\ (0.237) \end{gathered}$ | $\begin{gathered} 0.842^{* * *} \\ (0.272) \end{gathered}$ |
| URY $\rightarrow$ BRA $\times$ 1995-2006 |  | $\begin{gathered} 0.047 \\ (0.129) \end{gathered}$ | $\begin{gathered} 0.092 \\ (0.243) \end{gathered}$ |
| URY $\rightarrow$ PRY $\times$ 1995-2006 |  | $\begin{gathered} 0.749 * * * \\ (0.275) \end{gathered}$ | $\begin{gathered} 0.991^{* * *} \\ (0.108) \end{gathered}$ |
| Observations | 102,900 | 102,900 | 102,543 |
| Symmetric pair FE | yes | yes | no |
| Directional pair FE | no | no | yes |

Table 2: Heterogeneous impact of MERCOSUR (cont.)

|  | (1) | (2) | (3) |
| :---: | :---: | :---: | :---: |
| VARIABLES |  |  |  |
| GSP | -0.188*** | -0.188*** | -0.006 |
|  | (0.055) | (0.055) | (0.064) |
| PTA | $0.258 * * *$ | $0.258^{* * *}$ | $0.314^{* * *}$ |
|  | (0.089) | (0.089) | (0.103) |
| FTA | $0.254^{* * *}$ | $0.254^{* * *}$ | $0.300^{* * *}$ |
|  | (0.084) | (0.084) | (0.088) |
| CU | 0.429*** | 0.429*** | $0.475^{* * *}$ |
|  | (0.117) | (0.117) | (0.120) |
| CM | $0.323 * * *$ | 0.323*** | $0.367 * * *$ |
|  | (0.117) | (0.117) | (0.119) |
| ECU | 0.254** | 0.254** | 0.289** |
|  | (0.122) | (0.122) | (0.126) |
| Border $\times 1986$ | -0.767*** | $-0.767^{* * *}$ | $-0.771^{* * *}$ |
|  | (0.084) | (0.084) | (0.086) |
| Border $\times 1987$ | -0.747*** | -0.747*** | -0.751*** |
|  | (0.079) | (0.079) | (0.080) |
| Border $\times 1988$ | -0.667*** | $-0.667^{* * *}$ | -0.670*** |
|  | (0.078) | (0.078) | (0.079) |
| Border $\times 1989$ | -0.625*** | -0.625*** | -0.632*** |
|  | (0.079) | (0.079) | (0.080) |
| Border $\times 1990$ | -0.554*** | -0.554*** | $-0.559^{* * *}$ |
|  | (0.070) | (0.070) | (0.070) |
| Border $\times 1991$ | $-0.537^{* * *}$ | $-0.537^{* * *}$ | $-0.542^{* * *}$ |
|  | (0.068) | (0.068) | (0.068) |
| Border $\times 1992$ | -0.513*** | -0.513*** | -0.518*** |
|  | (0.062) | (0.062) | (0.062) |
| Border $\times 1993$ | -0.470*** | -0.470*** | -0.474*** |
|  | (0.057) | (0.057) | (0.057) |
| Border $\times 1994$ | -0.402*** | -0.402*** | -0.406*** |
|  | (0.054) | (0.054) | (0.053) |
| Border $\times 1995$ | -0.326*** | -0.326*** | -0.330*** |
|  | (0.048) | (0.048) | (0.047) |
| Border $\times 1996$ | -0.313*** | -0.313*** | $-0.317^{* * *}$ |
|  | (0.051) | (0.051) | (0.050) |
| Border $\times 1997$ | -0.225*** | -0.225*** | $-0.228^{* * *}$ |
|  | (0.047) | (0.047) | (0.046) |
| Border $\times 1998$ | $-0.173^{* * *}$ | $-0.173^{* * *}$ | $-0.174^{* * *}$ |
|  | $(0.038)$ | (0.038) | (0.035) |
| Border $\times 1999$ | -0.179*** | -0.179*** | -0.179*** |
|  | (0.045) | (0.045) | (0.042) |
| Border $\times 2000$ | $-0.122^{* * *}$ | $-0.122^{* * *}$ | $-0.121^{* * *}$ |
|  | $(0.039)$ | (0.039) | $(0.038)$ |
| Border $\times 2001$ | -0.109*** | -0.109*** | -0.108*** |
|  | (0.032) | (0.032) | (0.031) |
| Border $\times 2002$ | -0.140*** | -0.140*** | -0.140*** |
|  | (0.021) | (0.021) | (0.019) |
| Border $\times 2003$ | -0.094*** | -0.094*** | -0.093*** |
|  | (0.018) | (0.018) | (0.016) |
| Border $\times 2004$ | $-0.052^{* * *}$ | $-0.052^{* * *}$ | $-0.051^{* * *}$ |
|  | (0.010) | (0.010) | (0.014) |
| Border $\times 2005$ | -0.030* | -0.030* | -0.029 |
|  | (0.018) | (0.018) | (0.022) |
| Observations | 102,900 | 102,900 | 102,543 |
| Symmetric pair FE | yes | yes | no |
| Directional pair FE | no | no | yes |

Notes: The dependent variable are nominal bilateral trade flows. All specifications include exporter-time, importertime and either symmetric of directional pair fixed effects. Standard errors are clustered by exporter, importer and year.

## D Additional results

## D. 1 Homogeneous within-bloc trade cost reduction

Table 3: General equilibrium trade impact of MERCOSUR of a homogeneous within-bloc trade cost estimate ${ }^{\text {a }}$

| from/to | Argentina | Brazil | Paraguay | Uruguay | MERCOSUR $^{\text {b }}$ | RoW $^{c}$ | All destinations |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991-1994 |  |  |  |  |  |  |  |
| Argentina | -1.8 | 101 | 71 | 86 | 95 | 2 | 15 |
| Brazil | 83 | 0.0 | 65 | 79 | 80 | -2 | 5 |
| Paraguay | 103 | 114 | -5.2 | 98 | 109 | 9 | 35 |
| Uruguay | 86 | 96 | 68 | -5.8 | 90 | 0 | 28 |
| MERCOSUR $^{\text {b }}$ | 83 | 100 | 67 | 82 | 86 | -1 | 8 |
| RoW $^{\text {c }}$ | -4 | 2 | -13 | -6 | -1 | 0.0 | 0.0 |
| All origins | 9 | 7 | 0 | 21 | 8 | 0.0 | 0.1 |
|  |  |  |  |  |  |  |  |
| 1995-2006 |  |  |  |  |  |  |  |
| Argentina | -4.9 | 250 | 162 | 202 | 239 | -2 | 26 |
| Brazil | 224 | -0.8 | 160 | 202 | 215 | -2 | 9 |
| Paraguay | 299 | 326 | -9.3 | 271 | 305 | 21 | 85 |
| Uruguay | 239 | 258 | 169 | -11.5 | 248 | 2 | 45 |
| MERCOSUR | 225 | 251 | 161 | 202 | 227 | -2 | 14 |
| RoW |  | -5 | 1 | -24 | -13 | -2 | 0.0 |
| All origins | 22 | 10 | -1 | 30 | 13 | 0.0 | 0.0 |

[^2]
## D. 2 Exclusion of data on Paraguay

Table 4: General equilibrium trade impact of MERCOSUR excluding all data on Paraguay ${ }^{\text {a }}$

| from/to | Argentina | Brazil | Paraguay | Uruguay | MERCOSUR $^{\text {b }}$ | RoW $^{\mathrm{c}}$ | All destinations |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991-1994 |  |  |  |  |  |  |  |
| Argentina | -2.8 | 139 | - | 50 | 113 | 5 | 19 |
| Brazil | 172 | 0.1 | - | -9 | 110 | -2 | 5 |
| Paraguay | - | - | - | - | - | - | - |
| Uruguay | 135 | 14 | - | -0.1 | 52 | -9 | 12 |
| MERCOSUR $^{\text {b }}$ | 168 | 97 | - | 9 | 102 | -1 | 8 |
| RoW $^{\text {c }}$ | -8 | 2 | - | 10 | -1 | 0.0 | 0.0 |
| All origins | 10 | 7 | - | 10 | 9 | 0.0 | 0.1 |
|  |  |  |  |  |  |  |  |
| 1995-2006 |  |  |  |  |  |  |  |
| Argentina | -6.0 | 310 | - | 71 | 248 | 1 | 29 |
| Brazil | 540 | -0.7 | - | -10 | 299 | -2 | 9 |
| Paraguay | - | - | - | - | - | -1 | - |
| Uruguay | 108 | 9 | - | -2.8 | 30 | -1 | 9 |
| MERCOSUR | 483 | 213 | - | 18 | 232 | -1 | 14 |
| RoW | -9 | 1 | - | -1 | -1 | 0.0 | 0.0 |
| All origins | 24 | 10 | - | 7 | 13 | 0.0 | 0.1 |

${ }^{\text {a }}$ Percent change in trade flows in general equilibrium computed for a trade elasticity of 4 . Both the estimation and the general equilibrium computation exclude all data on Paraguay. Exporters are in rows, importers in columns. Intra-national trade flows (on the diagonals) are shown in italics. All other cells exclude intra-national trade. Changes are expressed with respect to a counterfactual in which trade intensification due to mercosur does not occur and are measured in percentage points. The coefficients used for the computations are from a specification with heterogeneous directional trade effects similar to the one in Table 2, column (3), but where all observations involving Paraguay have been dropped.
${ }^{\mathrm{b}}$ The definition of mercosur excludes the own country in cells that show a trade flow from/to Argentina, Brazil, or Uruguay. In all other cells, these three countries are included in the definition.
${ }^{c}$ RoW (rest of the world): all countries except the mercosur countries: Argentina, Brazil, and Uruguay.

## References

Arkolakis, C., A. Costinot, and A. Rodriguez-Clare (2012): "New Trade Models, Same Old Gains?" American Economic Review, 102, 94-130.

Baier, S. L., Y. V. Yotov, and T. Zylkin (2019): "On the widely differing effects of free trade agreements: Lessons from twenty years of trade integration," Journal of International Economics, 116, 206-226.

Cheng, I.-H. and H. J. Wall (2005): "Controlling for heterogeneity in gravity models of trade and integration," Federal Reserve Bank of St. Louis Review, 87, 49-63.

Costinot, A. and A. Rodriguez-Clare (2014): "Trade Theory with Numbers: Quantifying the Consequences of Globalization," in Handbook of International Economics, ed. by G. Gopinath, E. Helpman, and K. Rogoff, Elsevier, vol. 4 of Handbook of International Economics, 197-261.

Dekle, R., J. Eaton, and S. Kortum (2007): "Unbalanced Trade," American Economic Review, 97, 351-355.

Head, K. and T. Mayer (2014): "Chapter 3 - Gravity Equations: Workhorse,Toolkit, and Cookbook," in Handbook of International Economics, ed. by G. Gopinath, E. Helpman, and K. Rogoff, Elsevier, vol. 4 of Handbook of International Economics, 131 - 195.

Yotov, Y. V., R. Piermartini, J.-A. Monteiro, and M. Larch (2016): An advanced guide to trade policy analysis: The structural gravity model, World Trade Organization Geneva.


[^0]:    ${ }^{1}$ While our method of choice is fairly general in that it encompasses various well-known trade models, it does leave out some factors, such as some dynamic effects of trade agreements, varying input-output linkages, etc. However, it is usually considered a good benchmark for computing the general equilibrium effects of trade policies (Costinot and Rodriguez-Clare, 2014).

[^1]:    ${ }^{2}$ With this normalization, the fixed-point problem can be solved in Stata with an extremely fast procedure using the excellent ge_gravity package by Thomas Zylkin.

[^2]:    ${ }^{\text {a }}$ Percent change in trade flows in general equilibrium computed for a trade elasticity of 4 . Exporters are in rows, importers in columns. Intra-national trade flows (on the diagonals) are shown in italics. All other cells exclude intra-national trade. Changes are expressed with respect to a counterfactual in which trade intensification due to MERCOSUR does not occur and are measured in percentage points. The coefficients used for the computations are from a specification similar to the one in Table 2, column (3), but restricting coefficients to be the same for all directional pairs within MERCOSUR.
    ${ }^{\mathrm{b}}$ The definition of mercosur excludes the own country in cells that show a trade flow from/to Argentina, Brazil, Paraguay, or Uruguay. In all other cells, these four countries are included in the definition.
    ${ }^{c}$ RoW (rest of the world): all countries except the mercosur countries: Argentina, Brazil, Paraguay, and Uruguay.

