Navigating by Falling Stars: Monetary Policy with Fiscally Driven Natural Rates

Rodolfo G. Campos ¹ Jesús Fernández-Villaverde² Galo Nuño^{1,3} Peter Paz¹

¹Banco de España ²University of Pennsylvania ³BIS

The views expressed in this paper are those of the authors and do not necessarily coincide with those of the BIS, Banco de España or the Eurosystem.

Determination of long-term inflation in the standard New Keynesian framework

• Taylor rule:

$$i_t = \overline{r} + \overline{\pi} + \phi(\pi_t - \overline{\pi}).$$

• Natural Rate

$$r^* = 1/\beta - 1.$$

• Long-term inflation determination: If the central bank sets $\overline{r} = r^*$, then it can achieve its inflation target $\overline{\pi}$.

What happens in a heterogeneous-agent New Keynesian model?

- In a HANK model, the natural rate is a function of the stock of debt \overline{B} : $r^* = r(\overline{B})$.
- Debt-financed fiscal expansions then act as "natural rate" shocks.
- To achieve its target, the central bank must adapt its monetary policy to the long-term fiscal stance $\overline{r} = r(\overline{B})$.
- This is a new form of monetary-fiscal interaction, unrelated to the FTPL.

Preview of findings

- There is a minimum level of debt compatible with the inflation target.
- If the central bank does not adapt its monetary policy to a permanent fiscal expansion, then long-term inflation will be higher.
- Compared to a RANK model, short-term dynamics are more inflationary even if the central bank adjusts, due to income effects.
- Robust monetary policy rules à la Orphanides-Williams perform much better in this environment than Taylor rules.
- We can infer the *policy gap* between the central bank intercept \bar{r} and the natural rate r^* using market data.

Model

Model overview

1. Heterogeneous households

• Mass 1 of households, subject to idiosyncratic labor productivity.

2. New Keynesian block

- Unions are similar to intermediate goods producers in a NK model.
- Sticky wages: they set wages on behalf of workers.
- Yields a simple wage Phillips curve.

3. Monetary and Fiscal Policy

- Central bank follows a Taylor rule.
- Treasury follows a fiscal rule.

4. Firms

- Representative firm with aggregate production function.
- Flexible prices.

Households

Households solve:

$$V(a_{i,t}, z_{i,t}) = \max_{c_{i,t}, a_{i,t+1}} u(c_{i,t}) - v(n_{i,t}) + \beta \mathbb{E}_t[V(a_{i,t+1}, z_{i,t+1})]$$
s.t. $c_{i,t} + a_{i,t+1} = (1 + r_t)a_{i,t} + (1 - \tau)\frac{W_t}{P_t}z_{i,t}n_{i,t} + T_t,$

$$a_{i,t+1} \ge 0.$$

- They choose $c_{i,t}$ and $a_{i,t+1}$. Their labor choice $n_{i,t}$ is is performed by unions.
- \circ $n_{i,t}$: working hours
- \circ $a_{i,t}$: asset position
- \circ $c_{i,t}$: consumption \circ r_t : return of bonds
 - $\circ W_t$: nominal wage
 - $\circ P_t$: price level
- \circ $z_{i,t}$: idiosyncratic productivity
- \circ T_t : net transfer

Treasury: Fiscal Policy

The treasury can issue one-period nominal bonds. Tax collection is given by:

$$\mathcal{T}_t = \int_0^1 \tau \frac{W_t}{P_t} z_{i,t} n_{i,t} di.$$

Public debt B_t accumulates according to:

$$P_t B_t = (1 + i_{t-1}) P_{t-1} B_{t-1} + P_t (G_t + T_t - T_t).$$

Fiscal rule:

$$G_t = \overline{G} - \phi_G(B_{t-1} - \overline{B}).$$

- \circ G_t : government consumption
- $\circ \mathcal{T}_t$: tax collection $\circ \overline{B}$: debt target

 \circ B_t : public debt

Central bank: Monetary Policy

The central bank follows a Taylor rule:

$$\log\left(1+i_{t}
ight)=\max\left\{\log\left(1+\overline{r}
ight)+\log\left(1+\overline{\pi}
ight)+\phi_{\pi}\log\left(rac{1+\pi_{t}}{1+\overline{\pi}}
ight),0
ight\}.$$

 $\circ \overline{r}$: real rate intercept

- \circ i_t : nominal rate \circ π_t : inflation
- $\circ \overline{\pi}$: inflation target

Firm

• Representative firm with linear aggregate production function:

$$Y_t = \Theta N_t$$
.

• Flexible prices: $W_t/P_t = \Theta$.

 \circ Y_t : output

 \circ Θ : constant productivity

 \circ N_t : aggregate labor

Unions

• Wage Phillips curve:

$$\log\left(\frac{1+\pi_t^w}{1+\overline{\pi}}\right) = \kappa_w \left[-\frac{\epsilon_w - 1}{\epsilon_w} (1-\tau) \frac{W_t}{P_t} \int u'(c_{it}) z_{it} di + v'(N_t) \right] N_t + \beta \log\left(\frac{1+\pi_{t+1}^w}{1+\overline{\pi}}\right)$$

• Proportional allocation of labor: $n_{i,t} = N_t$

 $\circ \pi_t^w$: wage inflation

 \circ N_t : aggregate labor

 $\circ W_t$: nominal wage

 \circ P_t : price level

Aggregation and market clearing

• In equilibrium all agents optimize and the labor, bond, and good markets clear:

$$G_t + C_t = Y_t,$$
$$A_t = B_t,$$

where aggregates are:

$$N_t = \int_0^1 z_{i,t} n_{i,t} di,$$
 $A_t = \int_0^1 a_{i,t+1} di,$
 $C_t = \int_0^1 c_{i,t} di.$

Calibration

Parameter		Value	Target/Sources					
Preferences								
σ	Elasticity of intertemporal substitution	1	Standard					
φ	Frisch elasticity of labor supply	0.5	Standard $N_{ss}=1$ 1% real interest rate in DSS					
$ u_{arphi}$	Disutility of labor parameter	0.791						
β	Quarterly discount factor	0.992						
	Income process							
$ ho_{e}$	Persistence income process (annual)	0.91	Floden and Lindé (2001)					
σ_{e}	Std. dev. idiosyncratic shock (annual)	0.92	Floden and Lindé (2001)					
	Production							
Y	Quarterly output	1	Normalization					
Θ	Constant level of TFP	1	Normalization					
κ_{w}	Slope of the wage Phillips curve	0.1	Aggarwal et al (2023)					
$\epsilon_{\it w}$	Elasticity of substitution	10	Standard					

Calibration

Parameter		Value	${\sf Target/Sources}$					
Fiscal policy								
r	Real interest rate (annual)	0.01	Baseline case					
\overline{B}	Debt target	2.8	Debt-to-GDP 70%					
\overline{G}	Government spending target	0.2	Spending-to-GDP 20%					
au	Tax rate	0.277	Taxes/GDP in 2022 B constant in DSS					
T	Net transfers	0.07						
$\phi_{\it G}$	Coefficient in the fiscal rule	0.1	Baseline case					
Monetary policy								
ϕ_{π}	Taylor rule coefficient	1.25	Standard					
$\frac{\pi}{\pi}$	Inflation target (annual)	0.02	Standard					

Monetary-fiscal interaction in the long run

Natural rate determination

• Demand for bonds:

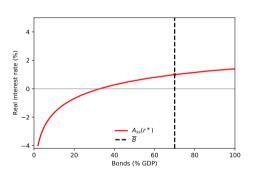
$$A_{ss}\left(r^{*}\right)=\int_{0}^{1}a_{i,t+1}di.$$

• Supply of bonds:

$$B_{ss} = \frac{\left(\overline{G} - G_{ss}\right)}{\phi_G} + \overline{B}.$$

• Assume $\phi_G > 1/\beta - 1$; then the supply of bonds is:

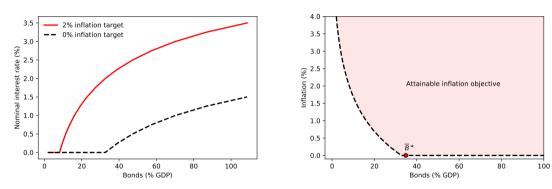
$$B_{ss}=\overline{B}.$$



Deviations from the natural rate in the Taylor rule (policy gap) imply deviations of long-term inflation from the objective

$$\pi_{ss}pprox \overline{\pi}+rac{r^*-\overline{r}}{\phi_\pi-1}.$$

There is a minimum debt level compatible with price stability



Steady-state nominal interest rate and inflation for different inflation targets

A surprise debt-financed fiscal expansion

Description of the exercise

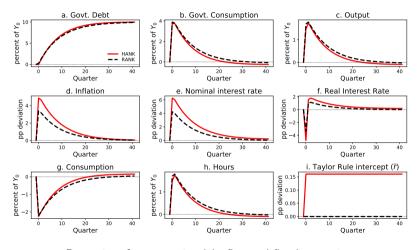
- The economy starts out at a steady state. At t=0 there is a surprise increase in \overline{B} from 70% of GDP to 80% of GDP (MIT shock).
- The fiscal authority lets the fiscal rule do its work, but adjusts \overline{G} to pay for the cost of the additional debt burden (necessary for the existence of a new steady state).
- These changes are common knowledge to all, including the central bank.
- The central bank adjusts \overline{r} in its Taylor rule and sets it equal to value of r^* in the new steady state to avoid inflation above its target in the long run.

Long term impact

	Initial steady state	New steady state		Difference	
		HANK	RANK	HANK	RANK
Bonds (% GDP)	70.00	80.00	80.00	10.00	10.00
Real interest rate	1.00	1.16	1.00	0.16	0.00
Nominal interest rate	3.02	3.19	3.02	0.17	0.00
Output	100.00	99.90	99.96	-0.10	-0.04
Consumption	80.00	80.16	80.07	0.16	0.07
Govt. consumption	20.00	19.74	19.89	-0.26	-0.11
Tax revenue	27.70	27.67	27.69	-0.03	-0.01
Primary surplus (% GDP)	0.70	0.93	0.80	0.23	0.10

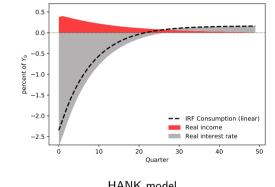
 $\textbf{Table 1:} \ \textbf{Steady state in the baseline HANK model and in the RANK model}$

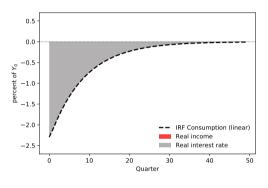
Short term impact



Dynamics after a surprise debt-financed fiscal expansion

Decomposition of the response of aggregate consumption





RANK model

Heterogeneity and inflation

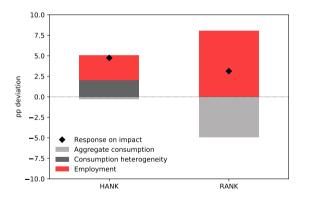
• Expressing the Wage Phillips curve as an infinite discounted sum:

$$\log\left(\frac{1+\pi_0}{1+\overline{\pi}}\right) = \sum_{t=0}^{\infty} \beta^t \kappa_w \left[-\frac{(\epsilon_w-1)}{\epsilon_w} (1-\tau) \int u'(c_{i,t}) z_{it} di + v'(N_t) \right] N_t.$$

- $\circ \int u'(c_{i,t})z_{it}di$: cross-sectional average of marginal utilities
- o $v'(N_t)$: labor disutility
- \circ N_t : hours worked or employment

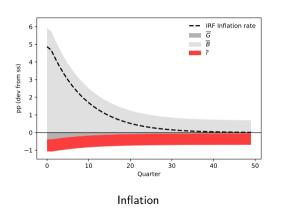
Heterogeneity and inflation

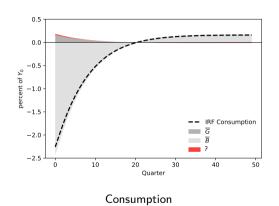
• Decomposition of the response of inflation on impact:



o
$$\int u'(c_{i,t})z_{it}di - u'(C_t)$$
: consumption heterogeneity measure

Decomposition of the response of inflation and consumption in terms of policy variables



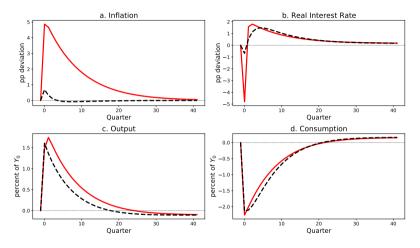


Extensions: Robust monetary rules

- An alternative to adjusting the intercept in the Taylor rule would be to use a monetary policy rule that does not require knowing the value of the natural rate.
- Orphanides and Williams Rule (2002): This rule links the **change** in nominal interest rates $i_t i_{t-1}$ to the deviation of inflation from its target $\pi_t \overline{\pi}$:

$$\log(1+i_t) = \log(1+i_{t-1}) + \phi_\pi \log\left(\frac{1+\pi_t}{1+\overline{\pi}}\right)$$

Extensions: Robust monetary rules



Comparison of a standard Taylor Rule and Orphanides-Williams Rule in the HANK model

Extensions: Alternative fiscal policies

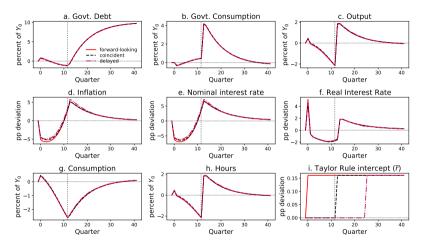
- Endogenous tax rate
 - \circ Government consumption and net transfers remain constant. The treasury adjusts the tax rate τ each period so that the evolution of public debt replicates the evolution in our baseline analysis.
- Lump-sum net transfers:
 - Government consumption and the tax rate remain constant. The treasury adjusts net transfers each period so that the evolution of public debt replicates the evolution in our baseline analysis.

Extensions: Alternative fiscal policies



Dynamics after a surprise debt-financed fiscal expansion

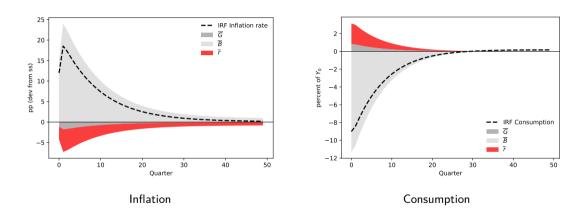
Extensions: Anticipated effects



Dynamics of an anticipated debt-financed fiscal expansion

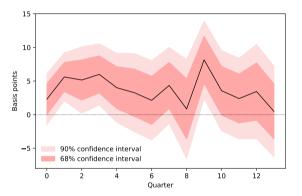
Extensions: A model with long-term debt

Decomposition of the response of inflation and consumption in terms of policy variables



Validating evidence and the policy gap

The response of the natural rate to a permanent increase in debt is quantitatively similar to simulations of the model



IRF of r^* to a 1 pp increase in the government debt-to-GDP ratio

Note: We estimate an LP with $r_{t+h}^* = \alpha_h + \beta_h D_{t-1} + \mathbf{x}_t \gamma_h + u_{t+h}$ and plot the regression coefficient β_h (the solid line) associated with the lagged public debt-to-GDP ratio D_{t-1} . We use the natural rate estimated by Lubik and Matthes (2015) as our measure of r^* . The control variables \mathbf{x}_t include four lags of the change in r^* , three additional lags of the public debt-to-GDP ratio, and four lags of the federal funds rate, the GDP deflator, and the unemployment rate. The shaded areas represent the 68% and 90% confidence intervals using Eicker–Huber–White standard errors.

Inferring the policy gap from market data

• From the Taylor rule in the DSS and the Fisher equation we obtain:

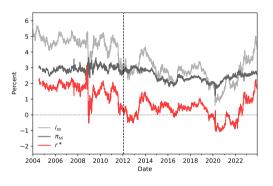
$$\pi_{ss}pprox \overline{\pi}+rac{r^*-\overline{r}}{\phi_\pi-1},$$

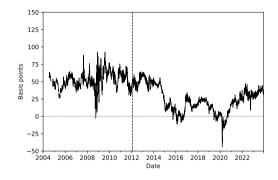
• If \overline{r} is constant, then the policy gap can be computed as

$$r^* - \overline{r} = rac{\mathsf{cov}\left(r^*, \pi_{\mathsf{ss}}
ight)}{\mathsf{var}\left(\pi_{\mathsf{ss}}
ight)} \left(\pi_{\mathsf{ss}} - \overline{\pi}
ight).$$

With this equation we can infer the policy gap from market data.

Inferring the policy gap from market data



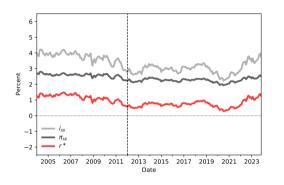


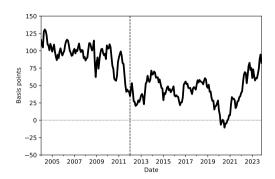
Long-term nominal and real rates and inflation

Policy gap $r^* - \overline{r}$

Note: Daily data. i_{ss} is the 5y5y forward nominal rate obtained from the zero-coupon U.S. yield curve. π_{ss} is the 5y5y ILS. r^* is computed as the difference $i_{ss}-\pi_{ss}$. The dashed vertical line marks the date when the 2% inflation target was announced (January 24, 2012).

Correcting for the term premium





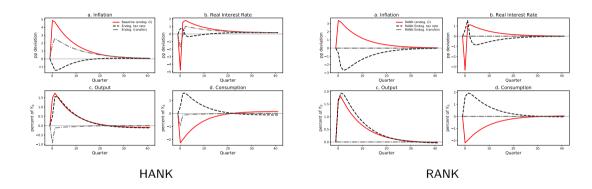
Data adjusted for term premia

Policy gap $r^* - \overline{r}$ (adj. data)

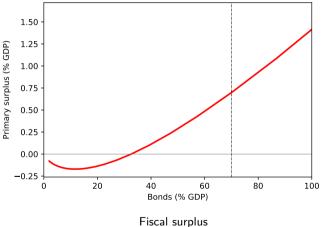
Note: Monthly data. The estimated term premia are removed from market data using the methodology described by Hördahl and Tristani (2014). The dashed vertical line marks the date when the 2% inflation target was announced (January 24, 2012).

Thank you!

Alternative fiscal policies: comparison with the RANK model



Fiscal surplus in different steady states



•